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By means of large-eddy simulation, homogeneous turbulence is simulated for neutrally 
and stably stratified shear flow at gradient-Richardson numbers between zero and one. 
We investigate the turbulent transport of three passive species which have uniform 
gradients in either the vertical, downstream or cross-stream direction. The results are 
compared with previous measurements in the laboratory and in the stable atmospheric 
boundary layer, as well as with results from direct numerical simulations. The 
computed and measured flow properties agree with each other generally within the 
scatter of the measurements. At strong stratification, the Froude number becomes the 
relevant flow-controlling parameter. Stable stratification suppresses vertical over- 
turning and mixing when the inverse Froude number based on a turn-over timescale 
exceeds a critical value of about 3. The turbulent diffusivity tensor is strongly 
anisotropic and asymmetric. However, only the vertical and the cross-stream diagonal 
components are of practical importance in shear flows. The vertical diffusion coefficient 
is much smaller than the cross-stream one at strong stratification. This anisotropy is 
stronger than predicted by second-order closure models. Turbulence fluxes in 
downstream and cross-stream directions follow classical mixing-length models. 

1. Introduction 
Turbulent transport in stably stratified shear flow is anisotropic owing to forcing of 

downstream turbulent motions by shear and conversion of vertical kinetic energy into 
potential energy by buoyancy forces (Richardson 1920). As a consequence of 
stratification, turbulent motions disperse passive species within the flow much quicker 
in the horizontal directions than in the vertical. The ability of the flow to mix a scalar 
quantity at different rates depending on the orientation of the gradient of its mean 
value is commonly considered in terms of the turbulent diffusivity tensor. Quanti- 
fication of the tensor components in stably stratified shear flow, however, is still an 
unresolved issue. 

Mixing properties of stably stratified shear flows are of interest in many geophysical 
situations. Stable density stratification, i.e. a situation where lighter fluid lies on top of 
heavier layers, is predominant in most of the earth’s atmosphere and water bodies. 
Stable stratification tends to suppress turbulent motions. Therefore, mixing will most 
probably occur in areas with strong shear forcing of turbulence. This situation is often 
encountered in the upper troposphere and the stratosphere (Lilly, Wac0 & Adelfang 
1974), in the atmospheric boundary layer over cooled surfaces (Ellison 1957), and in 
the ocean (Monin & Ozmidov 1985). 

The knowledge on homogeneous unstratified shear flows has been summarized by 
Tavoularis & Karnak (1989), based on extensive wind-tunnel studies. For such flows, 
components of the diffusion tensor have been measured in a wind tunnel by Tavoularis 



2 H.-J. Kaltenbach, T. Gerz and U. Schurnann 

& Corrsin (1981, 1985) and computed using direct numerical simulation (DNS) by 
Rogers, Mansour & Reynolds (1989). The tensor components were derived from 
measuring turbulent heat fluxes caused by superimposing weak temperature gradients 
to grid-generated turbulence. Webster (1964) was the first to report measurements from 
stratified shear flows in a heated wind tunnel. However, he could not reach steady-state 
conditions and the Reynolds number was rather low. Rohr et al. (1988 b) investigated 
the growth and decay of stably stratified homogeneous shear flows in a salt-stratified 
water channel. Several experimental studies dealt with unsheared homogeneous 
decaying turbulence in stratified situations (Stillinger, Helland & Van Atta 1983 ; 
Itsweire, Helland &Van Atta 1986; Hopfinger 1987; Lienhard &Van Atta 1990; Yoon 
& Warhaft 1990). Gerz, Schumann & Elghobashi (1989); Gerz & Schumann (1989, 
1991), and Holt, Koseff & Ferziger (1992) numerically simulated homogeneous stably 
stratified shear flows. They investigated the flow dynamics as a function of Richardson 
number using DNS. 

For neutral shear flows, Corrsin (1974) summarized various theoretical concepts to 
determine the diffusivity tensor and reviewed older studies. Tavoularis & Corrsin 
(1985) provided expressions for all components of the diffusivity tensor employing a 
quasi-Lagrangian analysis. Rubinstein & Barton (1 99 1) applied the renormalization- 
group theory to determine the diffusivity tensor for shear flows. Models of turbulent 
diffusion have been deduced using second-order closure (SOC) theory for neutral flows 
by Galperin (1986), Rogers et a(. (1989) and Tsarenko & Yaglom (1991), and for 
stratified turbulence with weak departure from isotropy by Yamada (1977), Freeman 
(1977), Launder (1978), Tsarenko (1989), and Dornbrack (1991). 

DNS of turbulent flows is restricted to low Reynolds numbers by the need to resolve 
all scales of motion including the energy dissipation range of the energy spectrum. For 
example, a grid of 1283 meshes is required to simulate a flow at a micro-scale Reynolds 
number Re, d 80 and Prandtl (or Schmidt) numbers of order 1. Laboratory studies of 
homogeneous stratified turbulence were conducted for a Reynolds number below 
about 160 (Rohr et al. 19883) or 245 (Tavoularis & Corrsin 1985) at Prandtl numbers 
of 700 and 0.7, respectively. 

A way of studying flows at higher Reynolds numbers which come closer to the ones 
observed in nature is the method of large-eddy simulation (LES). The three- 
dimensional time-dependent details of the large eddies, which carry most of the kinetic 
energy and turbulent fluxes, are computed explicitly in the LES method, whereas a 
subgrid-scale (SGS) model counts for the effects of small eddies on large eddies. Energy 
spectra from LES generally develop less steep slopes when approaching the cutoff 
wavenumber as opposed to DNS spectra. Therefore, given a certain number of degrees 
of freedom, a LES uses the resources more economically than a DNS where much of 
the computational effort has to be spent on weakly energetic motions. This becomes 
particularly important in a stratified flow. 

Previous DNS results have been compared with available experimental results on 
homogeneous turbulence which cover a range of Richardson numbers between 0 and 
0.37 (Rohr et al. 19883). For higher Richardson numbers, little data for validation of 
simulation results are available. Holt, Koseff & Ferziger (1992) found a rather strong 
Reynolds-number dependence of their DNS results. Questions concerning self- 
similarity or asymptotic behaviour which is a prerequisite for deducing some universal 
knowledge from the simulation results have not been addressed in detail in the previous 
work. New concepts, like the transition Richardson number introduced by Holt et al. 
(1992) to separate shear-dominated from buoyancy-dominated flows remain to be 
tested against a broader database than presently available from DNS. 
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The main focus of our work is on mixing properties of stably stratified homogeneous 
turbulence. For this purpose we include passive and active scalars in the domain and 
solve respective transport equations together with the Navier-Stokes equations. The 
resulting data allow us to compute the turbulent diffusivity tensor directly which, 
therefore, can be used to test diffusion models. Besides this, we also intend to augment 
the knowledge on the dynamics of stratified shear flows in a Richardson-number range 
between 0 and 1. By using LES we are able to study flows at Reynolds numbers higher 
than in previous DNS. Some results from accompanying DNS cases will be used to 
investigate the sensitivity of the LES results to details of the SGS-model. 

The method is summarized briefly in $2. The simulation results concerning 
turbulence dynamics are presented in $ 3  including a detailed discussion of the role of 
the Froude number and of the performance of the SGS model. Section 4 treats 
turbulent diffusion in stably stratified and sheared flow including tests of simple 
diffusion models. Section 5 finally summarizes the main results from the simulation 
series. 

2. The method and the simulation parameters 
Except for the SGS model and the inclusion of three passive species, the method used 

is as described in Gerz et al. (1989), and therefore only the essential features are 
summarized here. We simulate the turbulent flow in a cubic domain with side lengths 
L. As indicated in figure 1, the mean velocity (U(z), 0,O) and the mean temperature O(z) 
have uniform gradients in the vertical coordinate z while being constant in the two 
other directions. The three species with mean concentration Ci, i = 1,2,3, have 
uniform orthogonal gradients in the Cartesian directions, i.e. Ci(x,) increases linearly 
with xi and is constant in the two other coordinate directions. All gradients of mean 
species concentrations are kept fixed in time. As explained in Rogers et al. (1989), this 
implies an additional height-dependent source U(z) dC,/dx to balance the advection of 
fluid with smaller concentration from downstream. However, this source does not 
influence the turbulent fluxes. The turbulent fluctuations relative to these mean values 
are ui = (u, u, w)  for velocity, 0 for temperature and ci for concentrations. These 
quantities satisfy periodic boundary conditions at the lateral sides of the computational 
domain and shear-periodic conditions (i.e. periodicity in a direction which rotates with 
the mean shear) at the upper and lower boundary. The fluctuations follow the 
continuity equation for an incompressible fluid with constant density p,  the equations 
of motion including buoyancy due to density fluctuations and gravity g in the 
Boussinesq approximation, and the conservation laws for heat and species con- 
centration as a function of spatial coordinates xi = (x,y,z) and time t. The density 
fluctuation is a linear function of temperature with a constant volumetric expansion 
coefficient /3. Coriolis forces as well as molecular diffusion are neglected. From 
Smagorinsky’s closure for modelling of SGS-fluxes we obtain turbulent diffusivities 

’t = (CSGS A)2(2Sij Sji)1’2, Yt,  0 = Yt,  c = V t / P r S G S ,  (1) 

for velocity, temperature and concentrations, respectively. Here, S,, = #ui/axj + 
auj/axi) is the resolved velocity deformation tensor, cSGS is the Smagorinsky 
coefficient, and Pr,,, is the turbulent Prandtl number of SGS motions. The velocity 
deformation tensor does not contain the mean shear dU/dz (see 53.5 for details of the 
SGS-model). 

The passive scalar c3 and the temperature 0 satisfy identical equations for Y ~ , ~  = Y ~ , ~ .  
Therefore we get identical statistics when both fields are subject to the same initial 
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FIGURE 1 .  Computational domain and mean profiles. 

condition. Subsequently, most results are obtained from simulations with only two 
passive scalars c, and c2 and temperature 8. In g4.3 we address the question of whether 
a passive scalar cg which is initially stochastically independent of the temperature field 
develops a different transport behaviour to the temperature. 

Dimensional quantities refer to L, AU = LS, A@ = Ls, ACi = Lsi and S-' as the 
reference scales for length, velocity, temperature, concentrations and time, respectively, 
where the constant mean gradients are abbreviated as 

The turbulence is characterized by the effective velocity q = (u" + 3 + t;")l'' and by the 
integral lengthscale I, 

where E(k) is the energy spectrum as a function of the inverse wavelength or integer 
spherical wavenumber k .  

The initial velocity fields are taken from a simulation of decaying isotropic 
turbulence at a time when the nonlinear interactions are fully developed. This situation 
is likely to resemble several laboratory shear-flow configurations (Tavoularis & Karnik 
1989; Rohr et al. 1988b), where the grid-generated turbulence is close to isotropy prior 
to experiencing shear or buoyancy forces. However, Rogers et al. (1989) and Holt et 
al. (1992) showed that about the same results are obtained with initial fields which have 
not developed nonlinear transfer of energy, as long as the initial shear number is low 
enough. 

Initially isotropic turbulence which instantaneously experiences constant mean shear 
and density stratification might not be generally representative for all geophysical 
situations having the same gradient Richardson number. However, it is a well-defined 
case most likely to show some universal (self-similar) behaviour. The anisotropy of the 
initial velocity field, e.g. initially purely two-dimensional horizontal motion, enters as 
an additional parameter which is not a subject of the present study. 

Our initial flow field has an energy spectrum E(k) with maximum energy at a 
wavenumber k corresponding to a wavelength iL. The turbulence intensity is 
q = O.O261AU, and the integral lengthscale is 1 = 0.02561;. The corresponding shear 
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numbers are Sh = Sl/4 = 0.98 and Sq2/c = 5.04, where e denotes the dissipation rate 
of kinetic energy. At wavenumbers up to k z 5 ,  the energy spectrum increases 
approximately as E(k) N k3. The initial values for the species concentrations and the 
temperature are set to zero. The effects of using either zero or non-zero initial values 
for the temperature field and passive scalars are generally small in neutral and stratified 
shear flows (Gerz & Schumann 1989; Rogers et al. 1989; Holt et al. 1992). 

The equations are integrated numerically using a second-order finite-difference 
scheme in space and time together with a pseudospectral approximation of the mean 
advection. The pressure is determined from a Poisson equation such that the continuity 
equation is satisfied after each timestep, employing a direct Poisson solver. The grid 
spacing is A x  = L/128 in all three space directions. The timestep At is constant and has 
a value such that the Courant number A t A U / A x  equals to $ (the smaller value for 
pure shear flow cases because of increasing turbulence velocities). The simulations 
extend until St = 12 requiring 8 hours of computation on a single processor of a Cray 

We present results from five LES with Richardson numbers Ri  = /3gs/Sz = 0, 0.13, 
0.25, 0.5 and 1 where the turbulent Prandtl number of the SGS-model is Pr,,, = 1. 
Additionally, two LES (R i  = 0.13 and 0.25) are run with Pr,,, = 0.5 to test the 
influence of this model parameter. For reasons discussed in $3.5, the Smagorinsky 
coefficient is chosen to cSGS = 0.17. Further, three DNS with R i  = 0.13, 0.25, and 0.5 
have been performed (with Pr = l), starting from the same initial fields as the LES. We 
choose Re, = qZ/u = 89 for the DNS cases after inspection of the temporal evolution 
of the mean eddy viscosity and the effective Reynolds number of the LES. 

Y-MP 2-32. 

3. Flow dynamics 
In this section we present our results concerning basic dynamic properties of the flow 

and discuss differences between our findings and previously published DNS data ($9 3.1 
and 3.2). Further, we compare our data with experimental ones in $3.3. Section $3.4 
discusses spectral properties of the dynamics and $3.5 considers influences of the SGS 
model and grid resolution. 

3.1. Results 
We evaluate the simulation data in terms of time series of the ensemble averages 
approximated by averages over the computational domain of the resolved fields. 
Ensemble mean values are denoted by bars, root-mean square values by primes, e.g. 
u' = ZW" Table 1 lists the resultant mean values for three specific times out of the last 
third of the simulation period of the LES. Temporal mean values and standard 
deviations of normalized quantities are given in table 2, as obtained by averaging the 
spatial mean values over the time period 8 < St < 12. Table 3 summarizes key 
quantities of stratified shear flow as resulting from different simulation methods. The 
LES results shown are without SGS contributions to avoid ambiguity of their 
estimates. 

Figure 2(a, b )  shows the temporal development of the turbulent kinetic energy, 
Ekin = #, and of the available potential energy, Epot = N2B8/(2s2), as a function of 
shear time St. For Ri  = 0, the potential energy is zero by definition in spite of non-zero 
temperature variance. We find a transition period until S t  FZ 3, during which kinetic 
energy decreases and potential energy increases strongly. The evolution of the ratio 
Ep,,/Eki,  (figure 2c) can be divided in an initial period until St FZ 5 ,  which reveals 
oscillations for the cases with R i  2 0.5, and an 'asymptotic' period for later times when 
the flows approach constant values depending on Ri. For the pure shear case, the 



Ri = 0 0.13 0.25 0.5 1 

St 8 10 12 8 10 12 8 10 12 8 10 12 8 10 12 

- 2.42 4.98 6.32 7.67 2.31 2.35 2.37 1.35 1.24 1.15 0.770 0.609 0.480 0.441 0.318 0.243 
- U Z  2.82 3.63 4.71 1.25 1.25 1.30 0.719 0.627 0.546 0.386 0.285 0.213 0.267 0.190 0.145 
W f  1.60 2.20 3.12 0.610 0.628 0.671 0.356 0.298 0.267 0.194 0.141 0.103 0.135 0.094 0.066 

B" 9.98 12.7 16.4 4.72 4.90 5.27 2.53 2.32 2.17 0.946 0.727 0.563 0.304 0.218 0.167 
4 46.5 65.6 84.2 35.5 44.9 53.1 28.2 32.9 36.7 20.4 22.6 24.3 15.5 17.0 18.2 
4 18.6 24.2 29.9 14.2 16.4 18.2 11.7 12.7 13.3 9.60 10.1 10.3 9.30 9.98 10.5 

- W O  1.83 2.47 3.42 0.519 0.577 0.634 0.176 0.156 0.145 0.020 0.0076 0.0060 -0.0007 -0.0019 -0.0019 
U O  4.32 5.42 6.33 1.97 2.05 2.11 1.04 0.998 0.946 0.488 0.389 0.308 0.175 0.127 0.100 

- U C 1  

WCl 
- uc, 3.84 4.62 5.78 2.28 2.29 2.38 1.56 1.43 1.31 1.09 0.948 0.822 1.01 0.876 0.770 
- ec, 16.0 21.4 27.4 8.75 9.81 10.8 4.94 4.88 4.84 1.77 1.51 1.27 0.250 0.126 0.064 

c: 0.911 1.19 1.60 0.387 0.369 0.362 0.235 0.191 0.160 0.132 0.090 0.062 0.078 0.047 0.030 
% 3.28 4.39 6.07 1.21 1.19 1.21 0.600 0.497 0.427 0.174 0.117 0.081 0.052 0.031 0.019 

15.1 23.4 33.3 9.11 11.2 13.0 6.64 7.18 7.46 4.22 4.07 3.83 2.78 2.52 2.28 
t'c2 6.05 8.59 11.6 3.76 4.27 4.65 2.97 2.99 2.95 2.17 1.96 1.75 1.80 1.59 1.42 
vt 0.058 0.063 0.070 0.044 0.043 0.043 0.038 0.035 0.033 0.031 0.028 0.024 0.027 0.022 0.019 
1 4.57 4.98 5.43 4.04 4.34 4.64 3.66 3.86 3.97 3.28 3.35 3.31 3.22 3.37 3.39 
lttu,z 6.46 7.04 8.20 4.69 5.09 5.36 4.50 4.92 5.02 4.73 5.02 5.59 5.36 5.98 6.97 
r - 32.9 32.8 33.0 20.0* 18.8* 17.8* 16.9 13.8 11.1 6.3 3.7 2.1 

TABLE 1. Spatial mean values obtained from the resolved LES fields at three specific times for Pr,,, = 1 (* = 0.5). All quantities refer to the units lO-'L, 
lO-*AU, L/AU, 1 O-2A0 and IO-*AC for length, velocity, time, temperature and species concentration, respectively. Y in YO. The one-dimensional integral 
lengthscale is computed by I,,,,, = 0.5L@P,u,,(k, = O)/G where @,,,, denotes the variance spectrum of velocity component u in the x-direction. 

- 

- - - UW 1.42 1.84 2.27 0.428 0.448 0.438 0.182 0.162 0.135 0.045 0.021 0.012 -0.005 -0.004 -0.002 

- 
- 
- 

10.9 13.9 16.3 6.46 6.96 7.24 4.16 4.01 3.89 2.48 2.25 2.05 1.68 1.47 1.31 
- 
- 2.22 3.01 4.08 0.426 0.463 0.482 0.144 0.150 0.148 -0.302 -0.257 -0.203 -0.186 -0.132 -0.080 
- 
- 

% 
- 

- - 

Q 
3: 
4, 
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Quantity Simulation/Ri 

F LES 1283 
DNS 1283 
Holt et al. 
( 1992) 

LES 963 
- DNS 963 

-we,wv LES 1283 
DNS 12g3 
Holt et al. 
(1992) 

LES 963 
DNS 963 

DNS 1283 
Holt et al. 
( 1992) 

LES 963 
DNS 963 

uulww LES12V 
DNS 1283 
Holt et al. 
( 1992) 

LES 963 
DNS 963 

2E,,,/wW LES 1283 
DNS 12g3 
Holt et al. 
( 1992) 

LES 963 
DNS 963 

- 
- U W / U ’ W ’  LES 1283 

_ -  

0 0.13 (0.11) 0.25 

1.54 f 0.05 1 .OO f 0.03 0.63 f0.02 
- 0.99 f 0.04 0.53 f 0.03 

1.8f0.1 0.9 0.3 f0.15 

1.70f0.02 0.93f0.05 0.57+0.03 
1.57f0.08 0.80k0.04 0.39k0.03 
0.47f0.01 0.32f0.01 0.19f0.00 
- 0.33 fO.01 0.18 fO.01 
0.5 0.32 0.09 

0.48f0.00 0.30f0.01 0.16+0.01 
0.47k0.01 0.31f0.01 0.17f0.00 
0.49k0.01 0.37k0.01 0.26+0.00 
- 0.37 f 0.01 0.24 f 0.02 
0.55 0.38 0.16f0.04 

0.50f0.00 0.33f0.00 0.23k0.01 
0.49f0.01 0.32f0.00 0.20f0.01 
2.8f0.2 3.7f0.1 4.1f0.2 
- 4.3 f 0.1 5.4 k 0.5 
3.6 6f0.5 9.5f1 

3.9 k 0.2 4.8 k 0.1 4.9 f 0.2 
3.7k0.2 5.4fO.O 6.1 k0.5 

0 l.OfO.O 1.9f0.1 
- l . lfO.0 2.2k0.2 
0 1.5 4.0f0.5 

0 1.3kO.O 2.3kO.l 
0 1.4f0.0 2.6f0.2 

0.5 

0.19f0.04 
-0.03 f 0.08 

0 f 0.2 

0.18 f0.04 

0.03 f 0.01 
- 0.04 k 0.02 
- 0.08 

0.03 _+ 0.00 
- 0.02 f 0.01 

0.08+0.02 
-0.03 k 0.04 

-0.16 

-0.01 k0.08 

0.07f0.01 

4.3 f 0.2 
6.2 f 0.5 
6.8f0.1 

4.7 f0 .2  
6.2 f 0.5 
2.6k0.1 
3.1 k0 .2  
3.8k0.2 

2.7f0.1 
3.2 f 0.1 

-0.01 f0.03 

1 

-0.03 f 0.01 

-0.2 .t 0.1 
- 

0.01 f0.04 
-0.14f0.05 
-0.01 +0.01 

-0.05 
- 

-0.005 k 0.017 
-0.03 f 0.03 
- 0.02 * 0.00 

- 0.08 
__ 

-0.003 f 0.010 
-0.07 f 0.01 

3.5f0.1 

3.6 f 0.2 
- 

3.5f0.1 
4.3 f 0.3 
2.4 f 0.1 

2.8 f 0.2 
- 

2.4fO.l 
2.5 f 0.2 

TABLE 3. Comparison of key quantities obtained from different simulations. Temporal mean values 
from the interval 8 < St < 12 (Holt et al.’s (1992) data from 10 < St < 14). Re, = q l / v  = 89, 57, 70, 
for DNS 12g3, Holt et al. (1992), DNS 963, respectively; Pr = Pr,,, = 1. 

kinetic energy increases exponentially. At Ri = Ri, z 0.13, the ‘stationary’ Richardson 
number, Ekin and, to a lesser degree, also E,,, become approximately constant. We will 
refer to cases with Ri > (<) Ri, as supercritical (subcritical). Ekin and E,,, decrease for 
Ri > 0.13. Comparing LES with DNS results it is found that both methods show 
almost identical energy levels for Ri = 0.13, but that the energies decay at stronger 
rates in the DNS compared to the LES when Ri is supercritical. 

The energy distribution among the variances Zau, VV and WW reaches almost constant 
ratios z/q2 (table 2). The anisotropy expressed in terms of Kij = uiuj/q2, increases 
slightly up to Ri = 0.5. Our corresponding DNS reaches similar anisotropy levels as the 
LES for Ri = 0.13 (table 3). However, for higher Ri, the vertical velocity is much more 
damped in the DNS than in the LES. 

The growth rate parameter 

P-B 
F=- , where P = - G S ,  B = - p g a ,  

€ 
(4) 

controls the rate of change of kinetic energy (equation (29) in the appendix). F = 1 
implies constant kinetic energy. The growth rate becomes approximately stationary for 
St > 6. Fis less than unity for Ri > Ri,, and about F = 1.5 & 0.05 for neutral shear flow 
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FIGURE 2.  (a) Kinetic energy, (b)  potential energy and (c) ratio of potential and kinetic energy versus 
time in shear-rate units, St, for various Richardson numbers: -, Ri = 0 (LES); ---, 0.13 (LES and 
DNS); ---, 0.25 (LES and DNS); ---, 0.5 (LES and DNS); ---, 1 (LES). Thick lines: LES 
results; thin lines: DNS results, 
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FIGURE 3. (a) Shear production P / s  and (b) buoyancy term B/s ,  normalized by the dissipation 
rate, versus Sf. Line coding as in figure 2.  

(table 2). In figure 3 we show the evolution of the ratios P / s  and B / E  versus St.  This 
plot gives detailed information on the relative importance of the three terms P, B, and 
E in the energy budget. In moderately stratified flows with Ri d 0.25, the production 
term P has roughly the same magnitude as the energy sink s, whereas the buoyancy 



10 H.-J. Kaltenbach, T. Gerz and U.  Schumann 

(a) 

0 

-2.0 
( x ~ o - ~ )  

-4.0 

_ _ ~  - we -6.0 

-8.0 

-10.0 

-12.0 

AU A@ 

0 1 2 3 
Ntin 

(b) 
0.6 1 I 

0.4 
- 

- uw 
u’w’o.2 

0 

0 3 6 9 12 
st 

FIGURE 4. (a) Vertical heat flux - a / ( A U A O )  versus N t j x .  (b)  Correlation coefficient 
-uW/(u’w’) versus St.  Line coding as in figure 2. 

term B never exceeds 20 YO of c in the asymptotic flow region (St > 6). For cases with 
Ri > 0.5, P and B are smaller than e except during the first buoyancy period when B 
plays an important role in the energy budget. The ratio of buoyancy production B and 
dissipation rate of potential energy x = +(N2/ s2 )  co, B/x ,  decreases from 1 at Ri = 0.13 
to less than 0.15 at Ri = 1 (table 2). The late stages of the LES with Ri = 1 and the 
DNS with Ri = 0.5 are dominated by the dissipative terms because the absolute values 
of P/E ,  B/E,  and B / x  do not exceed 15 %. The maximum value of Rif = B/P is close 
to 30% in our simulations. This corroborates the important findings by Rohr (1985) 
and Holt et al. (1992) that the buoyancy term B plays a minor role in the kinetic-energy 
budget of stratified shear flows and that the main impact of buoyancy on the 
development of the kinetic energy is rather indirect through reduction of the 
production term P. 

Time series of shear stress UW and vertical heat flux 2 reveal the strong influence of 
buoyancy on these quantities. The evolution of 2, as plotted in figure 4(a)  versus time 
scaled by half the buoyancy period, n / N ,  emphasizes the rapid decrease of the flux 
magnitude for increasing Ri. In all cases, vertical fluxes reach maximum magnitudes at 
approximately N t / n  = 0.25. Figure 4(b)  shows the evolution of the correlation 
coefficient of -uW. All data collapse on one curve for 0 < St < 1 .  Figures 3 and 4 
reveal that in both LES and DNS vertical turbulent fluxes may change their sign and 
become persistently positive, i.e. counter-gradient. We find only slight differences in the 
evolution of correlation coefficients of LES and DNS cases with Ri d 0.25. However, 
fluxes become counter-gradient for Ri = 0.5 in the DNS whereas they stay weakly 
down-gradient in the LES at this Richardson number. 

When comparing the magnitudes of counter-gradient fluxes with the most negative 
values of the fluxes, which were reached at times around N t / n  = 0.24 (see figure 4a) ,  
we find that the persistent positive fluxes amount to less than 1 % of the strong down- 
gradient fluxes that occurred in the early flow period. This holds for both LES and 
DNS. This small ratio has certainly to be taken into account when discussing the 
relevance of counter-gradient fluxes. 

Figure 5(a) depicts ratios of turbulent diffusivities and molecular or SGS-eddy 
diffusivities versus Ri at St = 11 for DNS and LES. The ratios do not change much for 
St > 6. It turns out that turbulent vertical fluxes of heat and momentum become 
smaller than their molecular counterparts in the DNS with Ri 2 0.25. Flux ratios of 
LES cases are approximately twice as high as in the DNS. Resolved scale fluxes are still 
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FIGURE 5. (a) Ratios of resolved turbulent and SGS-eddy diffusivities (LES data, solid lines) and of 
turbulent and molecular diffusivities (DNS data, dashed lines) versus Ri at St ~ 1 1 ;  0, momentum 
( K J v ) ;  0, heat ( K J y ) ;  *, spanwise diffusivity (D2.Jyc). (b) Reynolds stresses u2, u2, w2, -uW (from 
top to bottom) versus St for Ri = 0; -, LES with 12g3 meshes; ---, LES with 963 meshes; ---, 
DNS with 963 meshes. 

a factor of five higher than SGS-fluxes for Ri = 0.25. However, vertical (resolved) 
turbulent fluxes become smaller than SGS-contributions for Ri 2 0.5. Therefore, at 
late times the sum of the fluxes at resolved scales and at subgrid or molecular 
scales always remain down-gradient in both DNS and LES for all Ri under 
consideration. 

3.2. Discussion 
The dynamics of stably stratified and sheared turbulence have been discussed for 
laboratory experiments in Rohr et al. (1988b) and for DNS results in Gerz et al. (1989), 
Gerz & Schumann (1991), and Holt et al. (1992). The dynamics can be understood in 
terms of the transport equations for variances and covariances, which are given in the 
Appendix. 

3.2.1. LES versus DNS 
The dynamical results are similar to what has been described before on the basis of 

DNS. However, with increasing strength of stratification, differences between LES and 
DNS become more pronounced. As listed in table 3, the DNS data reported by Holt 
et a/ .  (1992) show 60 O/O higher anisotropy levels, expressed as the ratio uU/wW, than our 
LES data for Ri in between 0.13 and 0.5. They develop a 17% higher growth rate 
parameter F in the neutral case but considerably smaller values than our LES for 
Ri  > 0.25. The correlation coefficients of vertical fluxes of momentum and heat are 
3&50 % smaller in Holt et al.'s DNS for Ri = 0.25 compared to our LES. Further, our 
fine grid DNS data also differ significantly from Holt et al.'s DNS results although 
both simulations provided the same numerical resolution of 1 283 meshes. However, 
they come closer to the values obtained from our coarse grid DNS results with 963 
meshes. From the work by Shirani, Ferziger & Reynolds (1981) and Rogers, Moin & 
Reynolds (1986) it is known that the development of neutral homogeneous shear flow 
is quite sensitive to dissipative processes which occur in the initial stage of flow 
development. In figure 5(b) the evolution of the variances 2 is plotted for neutrally 
stratified shear flows simulated with different grid resolution and Reynolds numbers. 
The figure gives some hints as to how a strong initial dissipation rate influences growth 
rates. Generally, the variances drop to lower values in the low Re cases before they start 
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FIGURE 6. (a) Effective Reynolds number ql/< (LES) and Reynolds number q l / v  (DNS) versus S t ;  
(b) mean turbulent viscosity </(AUL)  (LES) and molecular viscosity v / (AUL)  (DNS) versus St. Line 
coding as in figure 2. 

growing. This drop is more pronounced for WW than for UU leading to higher 
anisotropy levels Kii in the coarse grid simulations. Hence, the differences between our 
DNS results and Holt et al.'s (1992) data are most probably due to Reynolds number 
differences. In fact, the initial Reynolds number of our 1283 DNS, based on q and 1 is 
89 compared to 57 in Holt et al.'s simulations. Re, was around 70 in our 963 DNS. Holt 
et al. (1992) also performed simulations with higher Reynolds numbers, which agree 
better with our data, but most of their results are reported for the rather low Reynolds- 
number case. 

Our DNS and LES results agree well for Ri = 0.13 (and smaller subcritical values, 
see Kaltenbach 1992) but diverge for supercritical Richardson numbers. This can be 
understood by examining the behaviour of the mean turbulent viscosity ~ r ,  and related 
Reynolds numbers, see figure 6. Although our LES is nominally free of viscous forces 
because the molecular fluxes are neglected, there exists an effective Reynolds number 
for the resolved turbulent motions, Re = q l / F t ,  which increases with time from 100 to 
about 300 for neutral flow but stays about constant at Ri = 1. The Reynolds number 
based on the molecular viscosity v obtained from DNS increases slowly for Ri = 0.13, 
but decreases in time when Ri is supercritical. The effective Re of the LES generally 
evolves to larger values than Re of the DNS which is mainly due to the temporal 
behaviour of the turbulent viscosity (figure 6b) .  In the most stable case, vt reduces by 
60 % of its initial value during the flow evolution, whereas it resumes its initial value 
at late times for Ri = 0. Therefore, more significant deviations between LES and DNS 
are expected in the more stable cases. 

Turbulent flows exposed to mean shear and stratification are temporally evolving 
and, hence, do not reach stationary states (except for Ris). Nevertheless, quasi- 
stationary states can often be achieved when normalized quantities such as correlation 
coefficients, anisotropy measures like Kij or ratios such as F, P I E  and B/t. reach 
stationary values. Our simulated flows achieve quasi-steady states after St = 6 for 
0 < Ri < 0.25. This indicates that the flow is in an asymptotic state where the 
properties are fixed by the value of Ri. Deviations from quasi-stationarity are observed 
for Ri 2 0.5. However, compared to the present DNS data and those of Gerz et al. 
(1989), Gerz & Schumann (1991) and Holt et al. (1992), the LES results fulfil the 
criterion of quasi-stationarity better. This effect is due to the SGS-model which reduces 
dissipation when the turbulence activity decreases. 
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FIGURE 7. Integral lengthscale l / L  versus St with line coding as in figure 2.  

Turbulent eddies change their shape under the influence of mean shear towards 
inclined vortex tubes. This leads to an increasing integral lengthscale 1. Figure 7 shows 
how stable stratification reduces the growth rate of 1. The fact that 1 grows at about 
constant rate during the period 3 < St < 12 in the neutral case (where the growth rate 
is largest) indicates that the computational domain is large enough to cover all relevant 
large-scale motion components. 

The collapse of shear stress and vertical heat flux for Ri  >, 0.5 demonstrates the 
decrease of vertical mixing, i.e. the ability of the flow to move heavier (colder) fluid 
over lighter (warmer) fluid. Holt et al. (1992) introduced the volume fraction Y of 
convectively overturning turbulence, i.e. statically unstable regions, where a(@ + O)/az 
is negative. Whereas the fluid is convectively mixed at more than 35 YO of the gridpoints 
in the neutral case, Y amounts to less than 5 %  for Ri  = 1 at late times (see table 1). 
The extinction of vertical overturning motion for large static stability is illustrated by 
iso-surface plots of the total temperature O(z) + 8 in figure 8. Little sign of convective 
zones is found in the Ri = 1 case. The surface pattern indicates wavy motions with a 
larger wavelength in the downstream than in the cross-stream direction. 

3.2.2. ~ u I t i p l e  time-scale probIem 
Holt et al. (1992) noted that the stratified shear flow is a multiple timescale problem. 

The outer timescales are S-l and N - l ,  where N = (pgdO/dz)1'2 is the Brunt-Vaisala 
frequency. The internal timescale of turbulence may be either a turnover scale, 7 = I/q, 
or a dissipative scale, 7, = q2 / (2e ) .  The internal and outer scales are related by the shear 
number Sh and the inverse Froude number Fi, 

Here, the gradient-Richardson number Ri  measures the ratio of the outer timescales. 
In the present simulations, the flow state varies at constant Richardson number with 
increasing internal timescale 7. Cases with different values of Ri reach the same value 
of Fi or Sh at different times St.  None of the three numbers Ri,  Sh and Fi, which are 
related through (5) ,  can be changed independently of each other. Gerz et al. (1989) and 
Holt et al. (1992) identified Ri as the primary dimensionless parameter in stratified 
shear flow. Ivey & Imberger (1991) found that the Froude number, which is the 
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FIGURE 8. Perspective views of iso-surfaces of temperature 8+ 0 = 0.2560 in a subdomain with side- 
lengths iL  at St = 12 for various Richardson numbers. These results are from simulations with 963 
grid points. (a) Ri = 0, (b) Ri = 0.25, (c) Ri = 0.5, (d) Ri = 1. 
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FIGURE 9. (a) Shear number Sh = Sl/q (upper curves) and SGS shear-number Sh,,, = S A X / ( ~ ~ ) O . ~  
(lower curves) versus St, (b) inverse Foude number Fi = N l / q  versus St.  Line coding as in figure 2. 

relevant parameter for shear-free stratified turbulence (Hopfinger 1987; Yoon & 
Warhaft 1990), is also well-suited for the characterization of stratified flows with 
considerable mean shear. Our results corroborate these findings. 

The turnover timescale T increases with time if Ri > Ri,, because the integral-length 
scale I grows monotonically for all Ri and q decreases for Ri > Ri,. Figure 9 shows how 
the change in timescale affects the evolution of Sh and Fi. Both become nearly constant 
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FIGURE 10. Percentage of convective instabilities Y(a), correlatioKcoefficients of vertical fluxes of heat 
(b), downstream momentum (c),  and correlation coefficient Oc,/(O’c~) (d) versus inverse Froude 
number Fiat  St 2 2. Symbols for LES: A, Ri = 0.13; +, 0.25; 0,0.5; 0 ,  and 1;  symbols for DNS; 
V , R i = 0 . 1 3 ;  x,O.25; 0,0.5.AlldataforPr, , ,=1. 

for Ri = 0 and 0.13 and increase otherwise. The higher decay rate of q in the DNS 
causes 7 to grow faster for Ri = 0.5 compared to the LES. 

The fact that Fi grows when Ri  is supercritical indicates that a true asymptotic state 
might not be expected for supercritical cases because the timescale ratio continuously 
changes in every decaying flow. Indeed, in the LESS with Ri  2 0.5 we find slight trends 
in the time series of P/s,  B/s,  -uw/(u’w’), and F (even if the buoyancy-induced 
oscillations are filtered out). Each of the simulations is characterized by a distinct 
evolution of Fi with time. Therefore Fi can be chosen instead of time as the 
independent variable to characterize the evolution of a stratified flow. 

Figure 10 shows how the volume fraction Y, the correlation coefficients for heat and 
momentum fluxes and the correlation coefficients for the cross correlation evolve 
as functions of Fi. Flows with almost constant Fi, like the Ri = 0.13 case, settle near 
a single point in this type of diagram, whereas decaying stratified cases approach the 
highest values of Fi at St = 12. In contrast to the plots versus St or N t / q  the curves 
have no common start point owing to the different initial values of Fi. It is noteworthy 
that the results for different Ri  cases line up in one single band when plotted versus Fi. 
Ivey & Imberger (1991) obtained similar results when plotting the flux-Richardson 
number or the heat-flux correlation coefficient versus the turbulent Froude number. 
Figure 10 also shows that both the momentum flux and the heat flux decay quickly for 
Fi > 1 and become practically zero or counter-gradient for a critical inverse Froude 

- 
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number Fi,,,, in between 2 and 3, independent of time, Richardson number or 
simulation method. 

Figure 9(b) together with figure 10(b, c) shows that the LES always provide smaller 
values of Fi (i.e. show stronger mixing at a given time) than the corresponding DNS. 
The differences in Fi are particularly large at supercritical Richardson numbers for 
St 2 6. They are the reason why DNS and LES with the same value of Ri reach 
different heat-flux and momentum-flux correlation coefficients (i.e. mixing properties) 
at a given time. However, we believe that the LESS would eventually follow the same 
evolution path as the DNS when time exceeds St = 12. Similar conclusions can be 
drawn from studying the flow evolution in terms of Froude number versus Reynolds 
number or in hydrodynamic phase diagrams as in Ivey & Imberger (1991) and Itsweire 
et al. (1 993). 

In summary, we conclude that the Froude number becomes at least as important as 
the Richardson number when the stratification becomes strong. We do not think that 
the definition of a ‘transition’ Richardson number as proposed by Holt et al. (1992) 
helps much for interpretation of shear flow data. The fact that Ri,,,,, depends on the 
Reynolds number can be interpreted in terms of Froude-number differences between 
low- and high-Reynolds-number cases. For the purpose of determining ‘characteristic ’ 
flow properties at a certain value of Ri it is important to have rather slowly varying 
Froude numbers. This is the case in our LES with Ri in between 0.13 and 0.25. 
Conversely, one has to be cautious when analysing DNS data at low Reynolds number 
(as Holt et af.’s (1992) DNS with Ri = 0.25) since these flows are in transient states. 

3.2.3. Asymptotic f low stages 
In the previous section we discussed the influence of the Froude number on 

asymptotic or self-similar flow stages. Here we want to widen the discussion and 
consider the influence of flow history. We ask whether the ratio of potential and kinetic 
energy reaches a characteristic ‘asymptotic’ value that is uniquely determined by the 
Richardson or Froude number. As was pointed out before, the magnitude of turbulent 
fluxes may change drastically during flow evolution. In cases with Ri 2 0.5, the flux 
terms P and B mainly contribute to the balances of kinetic and potential energy in the 
early flow period, 0 < St < 5 (figure 3), which will therefore subsequently be referred 
to as ‘mixing-dominated’. Later, in the ‘ decay-dominated’ flow regime, dissipative 
processes dominate the evolution of kinetic and potential energy. The ratio E,,,/E,,, 
reaches its ‘asymptotic’ value at St z 5,  i.e. during the mixing-dominated period. The 
ratio does not change much in the decay-dominated period because the ratio of 
dissipation rates, x / e ,  closely matches the ratio of energies, Epot/Ekin,  and because flux 
terms are small for St > 5. Hence, the energy ratio at late times is controlled by the 
mixing-dominated flow state and, therefore, depends on the flow history and does not 
necessarily reflect a ‘ natural ’ balance between potential and kinetic energy. 

Holt et al. (1992) did not find any significant change in the ‘asymptotic’ value of 
7 = 2E,,,/iG when they changed the initial ratio of potential to kinetic energy 
drastically. This would indicate that the asymptotic value of 7 is indeed quite universal 
for a given Richardson number. On the other hand, Holt’s data (Holt 1990) also reveal 
that the evolution of uW/u’w‘ does not depend on the initial value of at all. Hence, 
the early flow is controlled by the interaction of the initially isotropic velocity field with 
the mean shear. It is likely, therefore, that other initial fields (e.g. purely two- 
dimensional) may result in other asymptotic flow stages. 

The importance of the initial phase for the structure at late times is illustrated further 
by figure 11. It shows the field of the species concentration fluctuation c, at St = 12 for 
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FIGURE 1 1 .  Perspective views of iso-surfaces of concentration fluctuation c1 z 1 . 3 ~ ;  in a subdomain 
with side-lengths ;L. at St = 12 for (a) Ri = 0, (b) Ri = 0.5. These results are from simulations with 
963 grid points. 
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Ri = 0 and 0.5. From similar plots of the velocity fields, we found, as in Gerz (1991) 
and Holt et al. (1992), that the shear motions form tubes of vortices when stratification 
is weak. These structures are inclined to the downstream direction by an angle of 
approximately 30". The angle decreases and the tube-like vortices finally get destroyed 
when stratification becomes large. These dynamical structures also form the texture of 
species. At high stratification rather long downstream structures in the concentration 
fields prevail even when the vortex tubes have been destroyed. Hence, the structures of 
the concentration fields are built up by vortex dynamics at early times and persist when 
the motions have ceased. 

3.3. Comparison of simulation results with experimental data 

For neutral homogeneous shear flow, Tavoularis & Karnik (1989) summarized the 
state of knowledge with respect to the normalized Reynolds stress tensor as 
Kij = 0.5110.04, 0.27f0.03, 0.22i-0.02, -0.16+0.01, for i j =  11, 22, 33, 13, 
respectively. The corresponding LES results are given in table 2. A reasonable estimate 
for the relative deviation between both data sets is expressed by I(Kij)sim- 
(Kii)e,pl/(+KLJ, which is less than 12% at St = 12. Our neutral 963 simulations (LES 
and DNS, see Kaltenbach 1992), develop at St = 12 anisotropy levels which are 18 YO 
off in this sense. They show stronger temporal variation of Kij  than the 1283 
simulations; this is typical for low-Reynolds-number cases (cf. Roger et al. 1986). SGS 
contributions to the kinetic energy (see $3.5) amount to 14% of the resolved scale 
energy in the 1283-LES and to 17 O h  in the 963-LES. With SGS contributions, which are 
isotropic by definition, the numerical results agree even better with the measurements. 
For Ri = 0, Tavoularis & Karnik (1989) report a growth rate F = 1.48 & 0.13, which is 
close to our LES result 1.5 f 0.05. Low-Reynolds-number DNS and coarse-grid LES 
deviate considerably from this value (see table 3). Only our fine-grid LES shows 
approximately equal growth rates for all three velocity variances as was observed by 
Tavoularis & Karnik (1989). 

Figure 12 shows that the LES results agree quite well with data from a wide set of 
measurements and with previous numerical simulations (DNS). The scatter of data is 
quite large but small enough to allow some general conclusions. Before discussing the 
comparison, we describe briefly the various sources of data. 

Rohr et al. (1988 b) investigated homogeneous shear flow with stratification owing 
to variations of a salt concentration with height. The data are taken from the time 
period 5.7 < St < 9.6 in this experiment. Homogeneous conditions were approximately 
achieved in Komori et al.'s (1983) investigation of channel flow of water heated at the 
top surface by condensing steam. The data plotted are those given by Komori et al. 
(1983) as best estimates. In the boundary-layer experiment of Morel et al. (1991) the 
stable stratification was induced by cooling a wind tunnel from below. Ri was 
approximately constant within the interval 0.3 < z /6  < 0.57 over which the averages 
are taken within the boundary layer of depth 6. Nieuwstadt (1984) measured turbu- 
lence characteristics within the nocturnal atmospheric boundary layer using a 200 m 

FIGURE 12. Experimental data and simulation results versus Richardson number. The vertical bars 
denote the scatter of the data and the symbols denote the mean values from the laboratory 
experiments by 0 Rohr et al. (19886); A, Komori et al. (1983); V, Morel et al. (1991); 0, 
Tavoularis & Corrsin (198 1); x , the atmospheric boundary layer observations by Nieuwstadt (1984); 
0, the direct numerical simulations by Holt et ul. (1992) and +, by Gerz & Schumann (1991); *, 
the present LES results. (u) Ratio of vertical to downstream r.m.s. velocity fluctuations, (6) 
correlation coefficient of negative vertical heat flux, (c) correlation coefficient of negative vertical 
momentum flux, (d) ratio of negative vertical to downstream heat flux. 
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high mast. The data show that Ri is close to 0.2 independent of height for a large 
range of altitudes in the stable layer. Here, we have plotted the mean values from his 
unfiltered data at altitudes large compared to the Obukhov length. In the wind-tunnel 
experiments of Tavoularis & Corrsin (1981, 1985) temperature acts as a passive scalar. 
We show mean values of measurements at St = 8.6, 10.9 and 12.7. Moreover, we 
compare time-averages of simulation data from the DNS of Holt et al. (1992) for 
Re, = 52 (Re, = 57) and Pr = 1 at St = 10, 12 and 14, from the DNS of Gerz & 
Schumann (1991) for Re, = 27 and Pr = 1 in the interval 8 < St < 12, and from our 
LES for Pr,,, = 1 in the interval 8 < St < 12. 

As stated before, low-Reynolds-number DNS predict more anisotropic flows with 
smaller ratio w’/u’ (figure 12a). The correlation coefficients of both the momentum and 
the heat flux decreases with Ri (figure 12b, c). The LES and the DNS give notably 
similar results for Ri < 0.25, but differ for Ri = 0.5. Despite the large Prandtl 
(Schmidt) number difference between salt water and air, experimental values of 
correlation coefficients agree quite well with each other and with the simulation results 
- for Ri up to 0.25. Shear and stratification together also drive a downstream heat flux 
UB which becomes much larger than the vertical heat flux for strongly stratified flows 
(figure 124 .  

The largest differences between the LES results and the bulk of experimental data are 
observed with respect to the boundary-layer data of Komori et al. (1983) and Morel 
et al. (1991). This indicates that these experiments do not behave as homogeneous 
turbulence. The rather close agreement between results from homogeneous flows and 
Nieuwstadt’s (1984) data supports the local similarity hypothesis for the stable 
atmospheric boundary layer. 

With respect to the lengthscales of turbulence, experimental data have been reported 
only for neutral shear flows. Tavoularis & Karnik (1989) found values for 
S2F,,,,/( -uW) = 30+ 5 in most of the relevant experiments. The LES reaches 29.6 at 
St = 12. Also the shear number SlBBSz/q = 2.13 is in good agreement with the 
experiment if we combine Tavoularis & Karnik’s (1989) average values to obtain 
( S z c u , z / (  -uW)(-uW)/q2)1/2 = ( 3 0 ~ 0 . 1 6 ) ~ ’ ~  = 2.2. On the other hand, the shear 
number Sl,,,z/~‘ z 2.96 of the neutral case underpredicts the values in between 3.6 
and 4.0 reported by Rohr et al. (1988~) with no obvious reason. 

Despite the high Prandtl-number difference, the data of Rohr et al. (1988b) and the 
LES and DNS results show similar variations of the energy ratio 7 with Ri. 
Measurements in the stably stratified boundary layer show much scatter, but lie lower 
than the simulation results. Nieuwstadt (1984) reports 7 = 0.9 k 0.4 for Ri = 0.22 k 0.05 
while Hunt, Kaimal & Gaynor (1985) found values around 7 z 0.64 for 0.04 < Ri < 1. 
These differences may be caused by the inhomogeneity of the boundary layer or by the 
influence of flow history (initial conditions) on the simulation results. 

3.4. Spectra 
3.4.1. Variance spectra and spectral balances 

We have evaluated ‘ one-dimensional ’ spectra versus downstream, cross-stream 
(spanwise) and vertical wavenumbers (kz, k,, k,, respectively) and also ‘ radial ’ spectra 
versus the spherical wavenumber k = (kz +k%+k,2)li2. Figure I3 shows such spectra of 
kinetic energy and temperature variance for LES with two different values of Pr,,, 
and for three DNS. Most variance is gained at wavelengths in between f and $L and 
this corroborates our conclusion that the length-scale evolution is not influenced by the 
domain size. However, the variances at the first wavenumber are increasing, in 
particular for potential energy (or temperature variance) in strongly stratified flows, so 
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FIGURE 13.  Power spectra versus radial wavenumber k of kinetic energy (a) and temperature variance 
(b)  for Ri = 0,0.13,0.25,0.5 and 1 (from top to bottom) at time St = 11. Power spectra versus cross- 
stream ( ky )  wavenumber of kinetic energy for Ri = 0 . 1 3  and 0.5 at St = 6,  9 and 12 (c) and power 
spectra versus down-stream (k,) wavenumber of temperature variance (d) as in (b). The full curves 
are from LES with Pr,,, = 1, the long-dashed curves are from LES with Pr,,, = 0.5 and the short- 
dashed curves from DNS. Spectral kinetic energy in units of A V L .  spectral temperature variance in 
units of AWL.  

that the simulations could not be continued much longer with the fixed size of the 
computational domain. 

The spectra of the LES are similar to those obtained from laboratory experiments 
with similarly restricted ranges of scales. Rohr et al.’s (19883) spectra of horizontal 
velocity versus frequency (downstream wavenumber) also have negative slopes in an 
intermediate wavenumber range lying between about 2 for Ri = 0 and about 1.5 for 
Ri = 0.37. The negative slopes generally decreases when Ri grows. 

Figure 13 (c) shows cross-stream spectra of kinetic energy for several times. Spectra 
of LES develop time-independent shapes whereas all supercritical DNS develop 
progressively steeper slopes at the high-wavenumber end as time proceeds. However, 
even at late times (St = ll),  low wavenumbers contain similar amounts of energy in 
LES and DNS. Differences in the evolution of the integral lengthscale between LES 
and DNS are therefore not caused by changes at large scales but are due to changes 
in the spectral shape (cf. figure 7). 

We observe similar trends in the temperature-variance spectra (figure 13 b, 4: much 
more potential energy remains available at intermediate and high wavenumbers of LES 
cases than of DNS cases. Radial spectra of temperature variance tend to be flatter in 
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FIGURE 14. Terms of the spectral balance equations for (a)  kinetic and (b) potential energy for 
Ri = 0.25 at St = 8;  -, energy transfer due to nonlinear interactions; ---, energy dissipation; 

, shear production term -SCo,,; ---, buoyancy term bgCow0, which acts as energy sink in 
(a )  and as source term for potential energy in (b). Note that the balances are not complete because 
the terms due to mean advection and temporal change have been omitted. 

LES with increasing Ri. The value of the SGS-Prandtl number has a significant 
influence on the spectral slope of temperature variance (and scalar variance in general). 
A reduction of the SGS-Prandtl number from 1 to 0.5 causes a more rapid decay of 
one-dimensional temperature variance spectra for k ,  > 5 and of radial spectra for 
k >  15. 

The numerical grid of the LES is certainly not fine enough to resolve the inertial 
subrange of turbulence. This can be seen from the shape of the spectra in figure 13 and 
is even more obvious from the transfer spectra in figure 14 which do not vanish for a 
band of wavenumbers. From figures 13 (a) and 13 (c) for Ri = 0 we find the power law 
of kW2. This is consistent with the rapid distortion analysis of Hunt & Carruthers 
(1990). However, the fact that the energy spectra in the LES (and also in Rohr's 
measurements) decrease less steeply for large Richardson numbers than for neutral 
flow deviates from general expectations (Monin & Ozmidov 1985). One possible 
explanation is that the vertical heat flux is most efficient at small and moderate 
wavenumbers thus reducing kinetic energy in these simulations, see curve of ,8gCo,, in 
figure 14. This would be consistent with Stillinger et al. (1983) and Itsweire et al. (1986) 
who report spectra of vertical velocity fluctuations where the large scales are 
suppressed first by stable stratification while smaller scales remain energetic. On the 
other hand, plots of various terms of spectral balances for kinetic and potential energy 
(figure 14) reveal that for k > 30, the dissipation rates form the most important 
contribution to the local wavenumber budgets and, therefore, determine the slope of 
the energy spectra. These terms strongly depend on the SGS-model which, therefore, 
controls the spectral slope near the cutoff wavenumber. Because of the uncertainty 
introduced by the SGS-model, we regard our series of simulations as representing 
upper and lower bounds for possible flow evolutions in a qualitative sense and not in 
an exact quantitative sense. 

3.4.2. Co-spectra of shear stress and vertical heat j lux  

Since shear and stratification create anisotropic structures in the flow we expect that 
this information is also reflected in directional co-spectra of vertical fluxes of 
momentum and heat. In particular, the question of which scales of motion contribute 
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FIGURE 15. Co-spectra for momentum (a, c, e) and vertical heat flux (b, d, f) versus k,, k,, k, in 
variance preserving form for Ri = 0.25 at St = 11. -, LES (PrsGs = 1 ) ;  ----, LES (PrsGs = 0.5); 

, DNS. ___ 

to positive, i.e. counter-gradient, fluxes at strong stratification can be answered in 
greater detail by analysing one-dimensional spectra. Previous DNS work (Gerz & 
Schumann 1991 ; Holt el al. 1992) analysed the fluxes on the basis of radial co-spectra 
only. We examine co-spectra of uw and w19 versus k,, k,  and k, in a variance preserving 
form, i.e. k,Co(k,) versus log ki. We choose the two cases with Ri = 0.25 (figure 15) and 
Ri = 0.5 (figure 16) as representatives for a moderately stratified flow and a more 
strongly stratified flow at developed stages, St = 1 1 .  LES and DNS results are 
depicted. Figure 15 also shows the influence of varying SGS-Prandtl number. 
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FIGURE 16. As in figure 15 for Ri = 0.5 and Pr = 1. 

In general, the shape of a co-spectrum differs drastically with respect to the direction 
of the Fourier transform. Therefore, radial cospectra may be misleading. Differences are 
found at large and small scales. The DNS data differ from LES data, in particular at 
Ri = 0.5. Since turbulence decays at larger rates in the DNS than in the LES, the fluxes 
in DNS are generally smaller at all wavenumbers, except for the small-scale counter- 
gradient contributions in the vertical co-spectra. In accordance with the reports of Holt 
et a f .  (1992), examination of phase relations between w and 0 does not reveal the 
presence of significant (linear) wave motion at the late flow stage (cf. Kaltenbach 1992). 
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When Ri = 0.25, the large and intermediate scales contribute most to the down- 
gradient fluxes of momentum and heat. The spanwise wavenumber at which the 
strongest fluxes occur corresponds to the peak in the energy spectrum of the initial 
velocity field. Hence, the mean shear does not change the mean spanwise spacing of 
structures that cause intense fluxes. Conversely, both downstream and vertical co- 
spectra peak at smaller wavenumbers indicating that structures are elongated in the 
streamwise and vertical direction. The fluxes essentially vanish at small scales with 
respect to the horizontal directions. At small scales with respect to k,, however, 
significant counter-gradient fluxes for momentum and heat appear in LES and DNS. 
The heat flux at high wavenumbers is strongly sensitive to the value of PrSGS, the shear 
stress is not. Hence, at moderate Richardson numbers, the flow dynamics (represented 
by the shear stress) are rather insensitive at all scales to the value of the SGS-Prandtl 
number. 

For Ri = 0.5, the averaged turbulent vertical fluxes of heat and momentum become 
persistently counter-gradient in the DNS at times St > 9 whereas these fluxes remain 
down-gradient in the corresponding LES. At early times (St  < 3), the flux co-spectra 
for Ri = 0.5 look similar to those shown for Ri = 0.25. When 4 < St < 9, the fluxes for 
Ri = 0.5 change sign at low wavenumbers and thus reflect the periodic exchange of 
potential and kinetic energy which also causes the oscillating parts of the timeseries of 
UW and we. When St > 10, the co-spectra do not change shape until the end of 
simulation (St  = 12). 

Figure 16 reveals that horizontal co-spectra of both LES and DNS at St = 11 have 
counter-gradient contributions at large scales and negative values in the medium 
wavenumber range. The down-gradient fluxes at intermediate wavenumbers are much 
stronger in the LES than in the DNS. Fluxes vanish at high (horizontal) wavenumbers 
in the DNS but become counter-gradient again in the LES (except for Co,,(k,)). On 
the other hand, vertical co-spectra show vanishing or down-gradient fluxes at low 
wavenumbers and rather strong positive contributions at intermediate and small scales 
in LES and DNS. These observations are also made in the LES with Ri = 1 (cf. 
Kaltenbach 1992) where the fluxes at low horizontal wavenumbers as well as the 
average fluxes remain persistently counter-gradient for more than one buoyancy 
period. 

The flux co-spectra measured in the horizontal directions show that strong 
stratification influences sheared turbulence in roughly the same way as shear-free 
turbulence. Lienhard & Van Atta (1990) and Yoon & Warhaft (1990) found in their 
shear-free stratified wind-tunnel experiments that buoyancy modifies the co-spectra 
mostly at low wavenumbers, which periodically change their sign, whereas the fluxes 
at smaller scales remain down-gradient for a long time. The rather weak fluxes at low 
vertical wavenumbers reflect the fact that buoyancy suppresses vertical motion most 
efficiently on large scales which have large turnover times (and therefore high values of 
Fi) and forces the flow into thin horizontal layers (Metais & Herring 1989). From the 
general similarity of the co-spectral shapes of heat and momentum fluxes in flows with 
Ri = 0.25 and Ri = 0.5 it is most likely that both fluxes stem mainly from the same 
dynamical large-scale processes, which is one of Prandtl’s basic hypotheses. Differences 
between Co,, and Cow* are most obvious at the smallest scales (especially pronounced 
for Ri = 0.5). 

Previous analysis based on the radial co-spectra from DNS stated that timely 
persistent counter-gradient fluxes are caused by small scales whereas the large scales 
are responsible for periodic contributions to the time series of vertical fluxes (Gerz & 
Schumann 1991). Our one-dimensional co-spectra give a more complex picture. The 
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horizontal co-spectra indicate that the largest amount of counter-gradient fluxes stems 
from the large scales. 

In particular in the DNS at Ri = 0.5, where mean fluxes become positive at late 
times, we find the strongest counter-gradient contributions in the horizontal flux co- 
spectra at low wavenumbers. The counter-gradient fluxes at these scales originate from 
the strong mixing in the initial period and, hence, are a consequence of flow history. 
Therefore, large-scale counter-gradient fluxes do not represent an asymptotic or self- 
similar flow state and this phenomenon should not be restricted to low Reynolds 
numbers. Conversely, the vertical co-spectra exhibit the counter-gradient flux 
phenomenon predominantly at small scales where the heat flux strongly depends on the 
Prandtl number. Possible explanations for small-scale flux reversal are given in 
Schumann (1987), Holloway (1988), Gerz el al. (1989), Kaltenbach, Gerz & Schumann 
(1991), Gerz & Schumann (1991), Holt et al. (1992) and Gerz (1993). 

The differences between LES and DNS with respect to counter-gradient fluxes may 
originate from the different mixing at medium wavenumbers or from differences in the 
dissipation regime. For Ri = 0.5 we find that the medium wavenumbers of the LES are 
much more energetic than in the DNS. Because these wavenumbers are less influenced 
by buoyancy than the large scales they continue to mix temperature or momentum 
down-gradient, which causes the overall fluxes to remain more negative in the LES 
than in the DNS. On the other hand, if counter-gradient fluxes are due to dissipative 
processes at small scales, they will depend on details of the SGS model (like PrsGs). 

It is noteworthy that the LES partly produces stronger counter-gradient fluxes at 
small scales in the more energetic flow than the respective DNS in the less energetic 
flow. Finally, one should not overlook the fact that the average fluxes for Ri 2 0.5 
become small at late times anyway, and typically stay below 1 %  of the maximum 
values in the initial period. 

3.5. Intuence of the SGS-model and the grid resolution 
Large-eddy simulations rely on the hypothesis that the results depend only weakly on 
grid resolution and the details of the SGS model as long as it provides the correct 
amount of dissipation. Lilly (1967) showed that the coefficient csGs can be evaluated 
from the inertial range theory of turbulence when the grid scale is small enough such 
that the smallest resolved scales represent locally isotropic turbulence with an energy 
spectrum E(k) = For a Kolmogorov coefficient of a = 1.6 this results in 
cSGS = 0.17 (Schmidt & Schumann 1989). 

Our simulations lack an inertial subrange which can hardly be obtained unless the 
resolution is much finer than we were able to provide. A common practice in LES of 
a wide variety of flows is to account for the lack of an inertial subrange by adjusting 
cSGS in such a manner that energy is dissipated at a sufficient rate. Other SGS models 
like the structure function model of Metais & Lesieur (1992) suffer basically from the 
same problem. German0 et al. (1991) developed a procedure to determine cSGS 
dynamically during the simulation by measuring energy transfer rates close to the 
wavenumber cutoff. This is particularly important in inhomogeneous flows where cSGS 
may vary with the location. The spatial variability of cSGS is of minor importance in 
homogeneous turbulence where good results may be obtained with a fixed value of 
cSGs. However, the ability of the dynamic model to adapt cSGS to temporal changing 
flow conditions might be of particular interest in stratified flows which undergo 
significant changes in time. As explained in the next paragraph our modified version 
of the Smagorinsky model has some dynamical or self-adapting features. We do not 
expect, therefore, significantly different LES results when applying the dynamic model. 
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However, a detailed comparison of various SGS-models in stratified turbulence is 
desirable but beyond the reach of the present work. 

LES of channel flow using the dynamic model shows that c,,, is smaller in regions 
with high mean shear in the vicinity of walls compared to zones with weaker shear in 
the centre of the channel. This is consistent with findings of Schumann (1975) and 
Rogallo & Moin (1984) who stated that the value of c,,, tends to be more universal 
when the mean velocity gradient is removed before computing the strain rate 
magnitude. Moin et al. (1991) found values for c,,, between 0.06 and 0.08 from a 
priori tests of DNS data of homogeneous shear flow, i.e. more than 50 % smaller than 
the theoretical value for inertial range turbulence of 0.17. For the present LES we find 
that the ratio of average local deformation magnitude (2S, Sji)l12 (computed without 
mean shear S )  and mean shear S is close to one with the tendency to smaller values 
when Ri is increasing. We therefore decided to remove the mean shear from the 
computation of S,  which has several advantages: first, this allows us to use the 
theoretical value c,,, = 0.17 which does not have to be modified owing to the presence 
of shear. Including S in the computation of the strain rate would require an empirical 
reduction of c,,, by approximately 50% in order to recover good agreement of the 
growth rate F with experiments of homogeneous neutral shear flow. Secondly, one 
strong feature of our LES, namely the self-adaptation of the SGS-model to changing 
flow conditions, would be severely reduced, especially in the cases with Ri 2 0.5, 
because inclusion of S in the strain rate acts like adding a timely constant viscosity. 
Because the mean shear becomes stronger than the (average) local strain rate 
magnitude (computed without the mean shear) in strongly stratified cases, the major 
part of the SGS-stresses would simply be deterministic like in a DNS. Moreover, severe 
problems of a constant viscosity type SGS-model are to be expected in strongly 
stratified cases which may be close to relaminarization. Our model for vt has the 
desirable property of vanishing in a shear flow which relaminarizes owing to 
stratification effects. 

Mason & Derbyshire (1990) applied a model in which the SGS diffusivities get 
reduced in regions where the local stratification increases. This has effects similar to 
reducing the value of c,,,. Since the mean temperature gradient s has the same order 
of magnitude as the fluctuating temperature gradients (aO/az)’, the percentage Y of 
locally convective regions becomes very small for Ri 2 0.5. Therefore, at almost all 
locations csGs is reduced when one accounts for the influence of stability. As a 
consequence we found that the model causes large energy and variance at small scales 
(Kaltenbach 1992). Hence, we do not include the effect of stratification in our SGS 
model. Stratification should only be considered when the deformation rate includes the 
mean shear because in this case it is certainly desirable to have a mechanism which 
reduces the dissipative properties of the model when Ri increases. 

As a further argument for this decision we consider the magnitude of shear and 
buoyancy for the SGS motions. Relevant measures are the SGS shear number 
Sh,,, = SAx/(2e)ll2 and the related inverse Froude number, Fi,,, = Sh,,, Rill2. In 
the inertial range, the SGS kinetic energy e can be estimated from e = ( ~ ~ / ( c , , A x ) ) ~ ,  
where c, = 0.0856 (Schmidt & Schumann 1989). Sh,,, and Fis,, should be small in 
order to justify the assumption of locally isotropic turbulence at the smallest resolved 
scales of the LES. However, as shown in figure 9(a), Sh,,, is of order unity. Since 
E - e3/2/Ax,  the SGS shear number scales with Ax4/3 for fixed dissipation rate, an 
assumption which is only approximately satisfied. A reduction of Sh,,, by a factor of 
ten would be desirable, but would require 10314 z 5.6 times more grid point in each 
coordinate direction. Since Fi,,, < Sh,,, for Ri < 1, the impact of buoyancy forces 
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on SGS motions is of smaller importance than the impact of mean shear. Therefore, 
any changes of the SGS diffusivities as a function of local stability are of minor 
relevance compared to the impact of shear. 

The theory of locally isotropic inertial-range turbulence also suggests a SGS Prandtl 
number of about 0.5 (Schmidt & Schumann 1989), but this value should rise under 
strong stratification (Schumann 1991). Partly for this reason, but mainly for 
comparisons with DNS of fluid flows with Pr = 1, we used Pr,,, = 1 for the basic set 
of the LES cases. The data presented for PrSGS = 0.5, see table 2, show that most 
results (in particular the flow dynamics at Ri  < 0.25 in terms of quantities such as Ktj, 
F, and uW/(u’w’)) depend only a little on this Prandtl number. Larger sensitivity is 
found for strong stratification and for quantities that depend on the strength of scalar 
fluctuations such as a / ( w ’ O ’ ) ,  Pr,, and 9. This sensitivity is to be expected and remains 
an unavoidable _ _  source of uncertainty for the present study. Fortunately, scalar flux 
ratios like wO/uO and Dij /Dzz  (see $4.2) depend only a little on PrSG,. 

The suitability of our SGS model is supported by reasonable spectral shapes, as 
discussed in $3.4, and by the fact that the growth rate P / e  for neutral shear flow is 
computed in excellent agreement with the experimental data. 

From the values presented in table 3 we derive some conclusions concerning the 
sensitivity of results with respect to grid resolution. We find that in the weakly stratified 
cases with Ri  ,< 0.13, differences between an LES and a DNS which were carried out 
on the same grid (and with comparable effective Reynolds numbers) are less 
pronounced than differences between fine-grid simulations ( 12S3) and coarse-grid 
simulations (963) of the same type (cf. figure 5 b for Ri = 0). We find anisotropy levels 
K..-& which are in average 15% higher in the coarse-grid LES than in the fine- 
gi:d LES. This changes most other quantities like diffusive properties in the range of 
10-20 YO. Because the LESS show a similar trend with respect to grid resolution as the 
DNSs (see §3.2), we conclude that differences in the dissipation at small scales and the 
resultant changes in the transfer rates from large to small scales determine the level of 
anisotropy. Obviously, the effective Reynolds number of the LES is not yet high 
enough for the flow to become independent on this parameter. Nevertheless, for 
Ri = 0, our fine-grid LES results agree significantly better with experimental data than 
the coarse-grid results. 

In decaying stratified flows, i.e. for Ri  2 0.25, LES and DNS results differ 
considerably whereas the differences between coarse-grid and fine-grid simulations are 
relatively small. For example, both LES produce average down-gradient fluxes at 
Ri = 0.5, whereas both respective DNS become counter-gradient. We explain this 
with the increasing importance of the Froude number as a flow-controlling parameter 
when stratification increases. Whereas Fi of DNS and LES evolve very differently on 
both fine and coarse grids, the effect of grid resolution on Fi for the same simulation 
type is rather small (Fi of the coarse grid cases are given in Kaltenbach 1992). 

In conclusion we find that the SGS-model gives consistent results in neutral as well 
as stratified turbulence without the need to adjust the model parameters to a specific 
situation. The sensitivity due to grid resolution is partly related to changes in the 
effective Reynolds number. 

4. Turbulent diffusion 
4.1. Results 

An often used approximation in the modelling of turbulent diffusion is based on the 
assumption that turbulent fluxes can be linearly related to gradients of the mean value 
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FIGURE 1 7. Species-concentration variance (upper curves) and negative fluxes (lower curves) induced 
by a cross-stream gradient versus shear time for LES cases with different Richardson numbers. Line 
coding as in figure 2. 

of the transported quantities. It has long been known that such a relationship is often 
wrong in principle (because other forces may contribute to fluxes or when the principle 
of scale-separation is violated), yet can be useful in practice (Corrsin 1974). In general, 
the fluxes and gradients are related by a second-rank 'turbulent diffusivity tensor', 

dC 
I dxj 

= -D..-. 

The components D, can be 'measured' in terms of the fluxes induced by three 
independent concentration fields Ci with uniform gradients si in the three Cartesian 
directions. Because of flow symmetry only five out of nine tensor components are 
different from zero. 

The down-gradient flux E, is shown in figure 17. Evolution of the vertical and 
horizontal heat fluxes, i.e. 2 and 2, from which the tensor components D,, and D,, 
are gained, was presented in previous sections. The downstream flux UC, develops in a 
similar manner as the cross-stream flux E,. Both fluxes evolve similarly as the kinetic 
energy. They grow for Ri = 0, become stationary for Ri = 0.13 and decay for 
Ri 2 0.25. Unlike the vertical scalar flux 2, none of the horizontal fluxes becomes zero 
or changes its direction. 

We find a large difference in the temporal development of the variance @ compared 
to that of the scalar variances diminishes significantly for 
Ri > 0.13 (see Epot N tY2 in figure 2b), both other variances grow in time for all Ri 
(figure 17). The corresponding correlation coefficients of the horizontal fluxes reach 
stationary values in between 0.6 and 0.7, which are relatively independent of Ri 
(table 2). 

In order to measure the degree of anisotropy of the turbulent diffusion process, we 
normalize the tensor components with the spanwise diffusivity D,'. Normalization by 
D,, as in Rogers et al. (1989) is not applicable because of vanishing vertical heat flux 
for strong stratification. For all Ri, all tensor-component ratios Dii/Dzz reach 
approximately steady values in the interval 6 < St < 12, see figure 18. The curves 
D,,/D,, show a slight trend - -  with time towards higher values which is closely related to 
a similar trend in the ratio u'/zI'. DNS develop similar ratios D i j / D z z  as LES, indicating 
that the anisotropy of scalar transport properties depends only weakly on the small- 
scale motions. 

and 3. Whereas 

2 FLM 280 
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FIGURE 18. Normalized diffusivity tensor components versus St.  (a )  D33/ D,, (upper curves) and 
D,,/D,, (lower curves); (b) D,,/D,, (upper curves) and D31/D22 (lower curves). Line coding as in 
figure 2. 

4.2. Discussion of scalar transport properties 
For understanding? it is useful to consider the transport equations for the non- 
vanishing fluxes, -D,,: auc,/at = - ~ ~ l - ~ l ~ + + l c , - E L c l ,  

- D,, : awc,/at = -GS, + pgZ1 + +3c, - c,,,, 

- D,, : avc,/at = - ES, + $,,, - cZc,, 

- D~~ : auc,/at = - GS, - WC, s + +,,, - t,,,, 
- D,, : aWC,/at - = - - Wws, + pg&, + &, - c , ~ ~ ,  

aec,/at - = - - U o s ,  -izl s - EoCl, 

aec,/at = - wes, -iz3 s - Eoc3, 

acyat  = - 2uc1 s1 -eel, 
az /a t  = - 2vc2 S, - ec2, 

(9) 
(10) 
(1 1) 
(12) 
(13) 
(14) 
(15) 

- 

with related pressure correlations $ and dissipation rates E .  Note the formal 
equivalence of c, and 8. 

A simple approximation for the sink terms, used e.g. by Yamada (1977), Freeman 
(1977), and Rogers et al. (1989) assumes 

with a suitable timescale 7m,d = c,q2/c and a constant coefficient c, of the order one. 
Others have assumed more complicated relationships with extra terms describing linear 
interactions between the mean gradients and the turbulence fluctuations due to 
pressure forces (Launder 1978; Tsarenko 1989), and with c, depending on shear time 
and Reynolds number (Rogers et al. 1989). However, the simple relationship suffices 
to explain the basic effects. If one assumes, moreover, steady state in the sense 
d G / a t  6 G/7mod, one obtains an implicit expression for the diffusivities 

(16) 
__ 

+ic,-cicj = -ui Cj /Tmod ,  

- 

- 

(17) I - [- uw - Zl O pg/sl 0 ww - Bc, pg/s3 

uu + WC, s/s, 0 uw + WC, s/s, 
vv 0 Dtj = 7mod 

Similarly? one obtains estimates for the cross-correlations &, and 8c, = @s,/s. These 
approximations result in a linear system of equations for the tensor components Dtj. 
Equation (1 7) is identical with Rogers et al.’s (1989) model for Dii when the fluxes El 
and WC, are expressed in terms of the corresponding modelled coefficients D,, and D,,. 
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For positive mean gradients and weakly stratified flows, one can deduce from (25), 
- (27) and (26) that UW < 0, a < 0, a > 0. Hence, the above equations yield WC, > 0, 
8c, < 0, a, > 0, and WC, < 0. As a consequence, the relations D,, > iiii7m,d, 
D,, = D,, < WW7modr D,, < UW7m,d < 0, and D,, > D,, follow. The component 
D,, is negative for strong shear but may change sign and become positive for strong 
stratification. Also D,, may change sign and become negative. The diffusivity tensor 
is symmetric only for isotropic turbulence but asymmetric is sheared and in stratified 
turbulence. This asymmetry is a fundamental difference to molecular diffusion 
processes. 

The differences in the temporal development of the scalar variances c!, c: and 3 - ?? 
stem from the different source terms which generate these variances. Buoyancy forces 
connect the vertical flux WC, - w8 and the corresponding variance @ (see (27) and (28)) 
which limits the growth of temperature variance at strong stratification. There is no 
such buoyancy coupling between the horizontal fluxes El and UC, (see (7) and (9)) and 
the corresponding variances (see (14) and (1 5)). 

The correlation El is important for the diffusivity component D,, in stratified flows 
(see (17)). The corresponding correlation coefficient reaches a rather large value of 
- 0.74 in a neutral flow (table 2). Rogers et al. (1989) conclude from the high correlation 
of 8 and c, that the concentration fields quickly adjust to the velocity field. The strong 
decrease of 8c,/(O'c~) under strong stratification indicates a decoupling of horizontal 
and vertical motion. The quick decay of the shear stress corroborates this view. This 
correlation coefficient Z,/(O'c;) reaches stationary values very slowly in cases with 
Ri 2 0.5. These data do not collapse as well as others when plotted against Fi (figure 
10). This might indicate that flow history affects species concentrations more than 
dynamics (see also figure 11). 

Mean values of Dij /Dzz  for different Ri are represented in table 2 and in figure 19. 
Figure 19 contains also the results obtained by Rogers et al. (1989) from DNS for 
neutral shear flow (data taken from Rogers et al. 1986) and measurements of 
Tavoularis & Corrsin (1981,1985). For neutral flows, the simulations agree in the sense 
that D,, is about three times larger than D2,, and D,, is roughly half the value of D,,. 
As expected from (17), this ratio is larger than that of the velocity variances, which 
equals 1.74: 1 :0.6 in the LES (1.71 : 1 :0.84 in the DNS of Rogers et al. 1989). Both off- 
diagonal components are negative and D,, < D,, < 0, as expected. Tavoularis & 
Corrsin (1981, 1985) measured D,,/D,, = - 1.4, D,,/D,, = 0.63, whereas the LES gives 
D1,/D, ,  = - 1.10, D33/D22 = 0.52, for Ri  = 0. 

The theory leading to (17) assumes that the timescale 7,,d is the same for all 
correlation components. Dornbrack (1991) applied a more complete theory based on 
the SOC closure deduced by Yamada (1977) which results in (17) and he provides an 
explicit approximation for 7m,d as a function of l /q .  Figure 19 shows the results of this 
model which are obtained if the Reynolds stresses are taken from the LES. For Ri  = 0, 
this results in Dij /Dzz  = 2.50, 0.61, - 1.45, -0.49 for the components ij = 11, 33, 13, 
31, respectively. The corresponding LES results are 2.90, 0.52, - 1.10, -0.65. 
The agreement is not bad, but the model with isotropic timescale 7m0d underestimates 
the anisotropy of the diffusivity tensor. 

Rubinstein & Barton (1991) show that the diffusivities depend strongly on the ratio 
P I E  for neutral flow. Using the measured value of P I E  they compute D,,/D,, = 2.3, 
which is close to the experimental result 2.2 (Tavoularis & Corrsin 1981) and in 
between the simulation results 2.5 (Rogers et al. 1989) and 2.1 (our data). 

For increasing stratification, the anisotropy in terms of D,,/D,, increases strongly. 
As expected, vertical diffusion becomes much more suppressed than lateral diffusion 

_ _  

2-2 
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FIGURE 19. Components of the diffusivity tensor versus Richardson number. The full lines interpolate 
the mean values, the bars indicate the scatter; 0, results obtained by Rogers et al. (1989) for Ri = 0 
(data taken from Rogers et al. 1986, run C128U); *, measurements by Tavoularis & Corrsin (1981, 
1985) for Ri = 0, dashed line results from the SOC model, equation (17). 

with increasing Ri. Conversely, buoyancy forces reduce the anisotropy in the 
horizontal plane in that Dl1/D2, decreases slowly with Ri. D,, changes sign at Ri M 0.2 
because buoyancy contributes more strongly than gradient fluxes to the production 
rate of WC, for stable stratification. The SOC model also predicts this sign change. It 
might be remarkable that, in spite of vanishing vertical fluxes due to a vertical gradient 
(D,,), the positive vertical flux due to a downstream gradient 

Turbulent diffusion coefficients describe the mean transport properties of all scales. 
However, as was shown on the co-spectra of the vertical heat flux, the transport 
properties may vary over the wavenumber range. In spite of the almost vanishing 
coefficient D,, at Ri = 0.13, strong vertical fluxes of c1 develop at large scales as well as 
at small scales but with opposite sign (figure 20a). The horizontal fluxes UC, and E,  are 
carried mainly by large scales (figure 20b). Therefore, we do not find significant 
differences of ratios D,/D,, of LES and DNS even at high Richardson numbers. 

In view of the difficulties of modelling the diffusion tensor one may ask whether all 
components of Dii are equally important for an accurate prediction of scalar dispersion 
in a turbulent shear flow. A rather simple analysis reveals that the tensor asymmetries 
are probably seldom relevant in practice, since the turbulent fluxes in the downstream 
direction are usually small in comparison to advective fluxes by the mean flow in that 
direction. Also, in real shear flows, downstream gradients are often small compared to 
vertical gradients. To illustrate this fact, we consider the transport equation which is 
satisfied by any concentration field in a homogeneous shear flow with constant 
diffusivities D, 

still persists. 
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FIGURE 20. Co-spectra of scalar fluxes in variance preserving form. (a) Co-spectrum of flux GI versus 
vertical wavenumber k, for Ri = 0.13 at St = 8 and 11; full lines Pr,,, = 1, dotted lines Pr,,, = 0.5. 
(b) Co-spectrum of cross-stream scalar flux vCz versus spherical wavenumber k for Ri = 0.25 at 
St = 5, 7, 9, 11 ; arrow indicates increasing time. 

In a concentration field C, which is initially constant in the vertical direction but driven 
by a uniform gradient in the downstream direction, a vertical concentration gradient 
aC/az = (aC/ax)St  evolves under the action of shear. This vertical gradient is 
proportional to the shear time and, hence, may become much larger than the original 
downstream gradient. It follows from (18) that 

ac ac a2c azc 
- + U(Z)  - = (Dl1 + (DI3 + D31) St + D,,(St)’) 7 + D,, 2. 
at ax ax dY 

(19) 

From this equation we see that for large times, St  % 1, the diffusivity tensor 
components D,, and D,,, and even more D,, become unimportant relative to D,, (and 
D,J. This also means that streamwise gradients are not likely to persist because they 
will quickly be smeared out by shear. Hence, the only tensor components of practical 
relevance are D,, and D2,. 

4.3. DifSusion of active and passive scalars with vertical gradients 
Up to now, we have determined the diffusion coefficients from the temperature field 
assuming that it evolves in the same manner as a passive scalar field c, with comparable 
vertical gradient. This was based on the fact that both fields evolve equally when 
starting from the same non-dimensional initial conditions. However, a passive scalar 
which is released statistically independently of 6 may evolve differently because 
temperature has a significant influence on the dynamics whereas the scalar c, is simply 
advected by the motion field. 

In order to quantify the possible differences, we performed simulations including an 
independent and passive scalar field c,. The largest differences between a buoyant and 
a passive scalar are to be expected for strong stratification. We performed two 
simulations for Ri = 0.5. In the first case, a scalar concentration fluctuation c, was 
released at St  = 0 with c j  = 0.05 (using Gaussian random numbers); in the second 
case, c, was released at St = 4 with cj = V ( S t  = 4) = 0.012 (again using Gaussian 
random numbers). Both cases are treated using DNS and zero initial temperature 
fluctuations, as before. The first case resembles a flow where 6 and c, pass through the 
same dynamical stages (same history) but differ in the initial r.m.s. value. In the second 



34 H.-J. Kaltenbach, T. 

(4 

Gerz and U. Schumann 

(b) 
1 .o 

0.8 - )---- 

0.6 - 

0.4 - 

0.2 - ’. ’. ‘. 
0 

-0.2 +---r--- 
0 3 6 9 12 

St 

FIGURE 21. Correlation coefficients versus St (DNS data); (a) for release of c3 at St = 0, (b)  for 
release of c, at ~t = 4; -, - w ~ / ( w ’ ~ ) ;  ---, -wC,/(w’c;); ---, ~ / ( Y C ; ) .  
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FIGURE 22. Normalized diffusivity tensor components D,, /D, ,  (upper curves) and D1,/D, ,  (lower 
curves) versus St computed by heat fluxes: -, computed by scalar fluxes (release at St = 4): 
----. The curves computed by the fluxes of the scalar released at St = 0 have been omitted since they 
are indistinguishable from the solid lines already for St > 0.5. 

case, the passive scalar is released at a time when the magnitudes of the mean fluxes 
of momentum and heat pass through minimum values (see figure 4); hence it can be 
assumed that the differences in evolution of 0 and c3 will be largest for this case. 

Figure 21 depicts results in terms of correlation coefficients of the vertical heat and 
scalar fluxes and of &. In both cases the coefficient &,/(BIcj) reaches values of 0.8 or 
more, indicating that the passive scalar c, is captured by the same motion elements as 
the temperature. The resultant diffusivity ratios D,,/D,, and D,,/D,, (figure 22) are 
practically the same for both kinds of scalars. The largest differences occur with respect 
to the vertical fluxes in transient flow stages. In the case of early release, the correlation 
coefficients wC3/w’ci and a / w ‘ 8 ’  become practically equal after St = 3 .  For late release, 
wC,/w’ci undergoes a strong down-gradient and therefore mixing-dominated state 
before it finally approaches the small values achieved by a / w ’ B ’  for St > 11. 

The results indicate that the transport properties of a passive scalar with vertical 
gradient can be computed from those for temperature in the stratified medium. 
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FIGURE 23. Test of mixing-length model, equation (20), for a flux driven by a cross-stream 
gradient. Line coding as in figure 2. 

4.4. Test of diffusivity models and other parameterizations 
In order to apply the above result, one needs simplified models to predict either D,, or 
D,, from the basic turbulence parameters. If one is known, the other can be determined 
from figure 19. A mixing-length approximation is 

where c,, and cz2 are open model coefficients. Values of the one-dimensional integral 
length scale I,,,, are given in table 1. Figure 23 shows the values of c,, computed from 
the simulations for various Ri. The coefficients become roughly stationary at late times. 
The coefficient c,, (not shown) varies between 1.2 (Ri = 0) and 0.4 (Ri = I), c,, differs 
by 50% between the neutral and the strongly stratified case at St = 12. Both 
coefficients c,, and c,, are approximately equal for St > 6 for a given Ri > 0.25. Such 
simple mixing models are suitable for the horizontal fluxes because the horizontal 
fluxes are carried by rather large motion scales, as was shown in figure 20(b). 

Various models have been proposed which express the vertical diffusivities Kh = D3, 
as Kh = ch e / N 2  or Kh = cN w"/N. The LES results for ch and cN are listed in table 2. 
For a further discussion see Schumann & Gerz (1994). Finally we test some 
parameterizations for the dissipation rate in stratified flows. The lengthscale ratio 
IJ(24, where 1, is defined by E = q3/1,, corresponds to the ratio of dissipative and 
turnover timescale T,/T.  It decreases from 3.5 at Ri = 0 to 1.7 at Ri = 1 in the LES. This 
corroborates the proposal of Brost & Wyngaard (1978) that buoyancy should reduce 
the size of the dissipation lengthscale. However, we find that the computed ratio of 1, 
and the buoyancy lengthscale lb = w'/N is much larger than unity. It grows steadily 
with time and reaches values in between 10 (for Ri = 0.13) and 40 (for Ri = 1) at 
St = 12. The dissipation of kinetic energy therefore does not scale with I,, which agrees 
with the findings of Schumann (1991). 

As an alternative, Hunt, Stretch & Britter (1988) proposed to choose the shear length 
I, = w'/S as the relevant lengthscale in order to parameterize the dissipation rate E in 
shear flows. The coefficient A,, defined by 

W f 3  
e = A,- = A ,  wf2S, 

1s 
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becomes stationary and depends only slightly on Ri during an early transient flow 
period. At late times A ,  approaches values in between 0.54 and 0.62 (see table 2), which 
is surprisingly close to the estimate A ,  = 0.45 that Hunt et al. (1988) deduced from the 
logarithmic law of the wall for neutral stationary boundary layers. 

5 .  Conclusions 
The dynamics and transport properties of homogeneous turbulence have been 

investigated for flows with uniform shear and with either neutral or stable uniform 
stratification. The LES method used extends the DNS method of Gerz et al. (1989) by 
a SGS model. The SGS model is very simple and may be improved in future studies. 
However, various arguments together with the parameter studies and comparisons 
between DNS and LES results indicate that the details of the SGS model are not very 
important, at least for Ri < 0.25. For Ri < 0.5, the computed normalized variances 
and covariances are within the range of data of a large set of measurements in 
laboratory and atmospheric flows. Also the growth rate, the shear number, and the 
shape of spectra agree generally well with experimental observations. 

Of major concern for this study was the question whether the turbulent flow state 
becomes self-similar in the sense of approaching constant normalized flow statistics. 
For small to moderate Richardson numbers, such a self-similar state is reached after 
a shear time of about 6 when the initial value of the inverse Froude number Fi = N l / q  
is small. In strongly stratified situations, Ri no longer defines the flow state uniquely and 
the Froude number becomes an important additional parameter. For Fi greater than 
a critical value of about 3 turbulent mixing dies out. In this case the final statistics 
depend on the history of mixing in the past fully turbulent regime. In particular, flow 
history affects vertical fluxes of both heat and momentum at low wavenumbers (large 
scales). Hence, we expect that the results for strong stratification depend on details of 
the initial conditions, and this should be studied in the future. 

We find that the LES and DNS give very similar results for weak stratification when 
the constant molecular viscosity of the DNS is set equal to the mean turbulent viscosity 
of the LES. For a given resolution, the LES resolves a wider range of energetic scales 
and thus gives a better approximation to high-Reynolds-number turbulence than a 
DNS. Also, the more energetic motions in the medium wavenumber range cause the 
inverse Froude number to grow less quickly so that mixing persists longer. Hence the 
LES results depend less on flow history than the DNS results. Finally, the LES adjusts 
its SGS diffusivities to the growing or decreasing level of small-scale turbulence energy. 
This makes the LES method superior to the DNS for studies of high-Reynolds-number 
flows and allows for a wider range of Richardson and Froude numbers. The self- 
adjusting property of the LES becomes particularly important in the case of shear flow 
at strong stratification because then decay rates are significantly higher than in shear- 
free stratified cases (Gerz & Schumann 1991). 

Comparisons between results from simulations with 963 and 1283 grid points suggest 
that the results are only weakly sensitive to the SGS model and the numerical 
approximations with respect to large-scale flow properties. However, such grids are 
much too coarse to resolve the inertial subrange of turbulence. Therefore, the results 
for small-scale properties depend on the details of the SGS model. In particular, the 
computed rate of dissipation depends on cSGS, and the scalar dissipation at large 
inverse Froude numbers depends also on the SGS Prandtl number. The grid sensitivity 
study also reveals that the flow evolution is not yet independent on the value of the 
effective Reynolds number. 
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For neutral stratification, the turbulence energy grows about exponentially with time 
approaching a constant shear number and a constant growth rate of approximately 
F = 1.5. The state of turbulence changes very slowly near a stationary Richardson 
number for which our simulations indicate a value of about 0.13. The values of the 
computed growth rate and the stationary Richardson number depend on details of the 
SGS model similarly but less strongly as DNS results depend on the Reynolds number. 

For the first time, the diffusivity tensor has been computed for stably stratified 
turbulence using the LES approach. The results corroborate our previous DNS 
analysis (Kaltenbach et al. 1991). The diffusivity tensor is strongly anisotropic with 
D,, > D,, > D,, and asymmetric, i.e. D,, + D,]. However, for practical applications, 
the only essential diffusivity parameters are D,, and D,, because streamwise gradients 
are not likely to persist in a shear flow. The ratio D,,/D,, decreases from about 0.6 for 
neutral flows down to values below 0.01 for Ri  > 0.5. For small Richardson numbers, 
buoyant and passive scalars with vertical mean gradients behave similarly. Some 
decorrelation between such scalars does occur for strong stratification at times when 
the fluxes are already small compared to those in the initial period. To a good 
approximation, the transport properties of a passive scalar with vertical gradient can 
be computed from those for temperature in the stratified medium. 

A severe limitation of the present simulations arises from the fact that vertical 
turbulent diffusivities D,, = Kh and K ,  become smaller than the molecular or SGS 
diffusivity when the Richardson number exceeds 0.5 in the LES (0.25 in the DNS). 
Turbulent horizontal diffusivities, however, remain considerably larger than their 
molecular/SGS-counterparts and are therefore more reliable than the results 
concerning vertical turbulent diffusion. For strongly stratified situations and large 
inverse Froude numbers the vertical fluxes may become counter-gradient at small and 
at large wavenumbers. The details of these fluxes at small wavenumbers depend upon 
the flow history and those at large wavenumbers on the Prandtl number. However, the 
magnitude of these fluxes is so small that they are hardly of practical relevance in most 
applications. 

The data set from LES has been used in order to test simple models. Downstream 
and cross-stream transports, which are always down-gradient and mainly carried by 
the most energetic motion scales, can be described by a mixing-length approximation. 
SOC models give about the right trends for the components of the diffusivity tensor but 
cannot describe the strong anisotropy. The task remains to deduce more accurate 
models which account for the anisotropy of the turbulence structure and for the 
reduction of mixing at large inverse Froude numbers. The relation 6 = Asw’,S as 
proposed by Hunt et al. (1988) provides a good estimate for the dissipation rate in 
neutral as well as in stratified shear flows with Ri < 1. 

This study was supported by the Volkswagenstiftung under the auspices of the 
DECHEMA. Part of this work was also supported by the Deutsche Forschungs- 
gemeinschaft. We thank Dr A. Dornbrack for providing the results of his SOC 
model analysis. Several comments by the reviewers motivated us to examine the role 
of the SGS-model in greater detail and to include additional DNS results. 

Appendix : Transport equations 

variances and covariances of homogeneous turbulent fluctuations, 
From the equations of motions follow ‘transport equations’ for the non-vanishing 

aiiiilat = -2uw~+4, , -~ , , ,  (22)  
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aizqat = $ 2 2 -  e22,  

awwlat = 2 p g 2  + $33 - e33, 

auwlat = -izs+pgii3+$,,-~,,, 
aiZ/at = - uws - 3 s  + - el,?, 

aidiat = - wws + p g a  + $3H - c:,~, 

a@/at = - 2 2 s  - €". 

A related balance exists for the available potential energy Epot = $g@/s = ;N2@/s2.  
The kinetic energy Ekin = +q2 satisfies 

(29) 

and the budget of the total energy E,,, = Ekin + Epot is independent of the vertical heat 
flux which converts kinetic energy into potential energy and vice versa, 

faq2/lat = - i G S + p g i d - e  = P-B-e = ( F - l ) e ,  

aE,,,/at = - u w s - ~ - ~ .  (30) 

Here, the pressure-interaction terms are denoted by 

In the ~ LES, the dissipation terms result from the subgrid fluxes, rij = a and 
ris = u; 0' as 

6 = &,,, and x = pge,/(2s). The subgrid fluxes are parametrized as rij = -2v, Sij and 
T , ~  = - (v t /PrSGS) (a6'/ax,), using (1). 
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